
IPCC ROOT 
Princeton/Intel Parallel Computing Center

30.01.2018

Progress Report
Vassil Vassilev, PhD



Status 16.01.2018—29.01.2018

✤ We worked mostly on finalizing our statement of work for 2018

2



IPCC-ROOT Statement of Work 2018

3

Component in 
ROOT Deliverable Success Criteria Period

Infrastructure

Enable Continuous Performance Integration: In Y1 we 
implemented various microbenchmarks which test code 

scalability (esp with respect to threading and vectorisation). 
We would like to continue extending them and running them 
on a nightly basis. Automatizing the process would allow us 

to find performance regressions. Another direct benefit 
would be that we can provide more detailed comparisons 
between compilers, compiler versions, compiler switches, 
libraries, operating systems and various Intel hardware. 
Currently the process is very laborious and takes a lot of 
developer's time which can be replaced by this automatic 

infrastructure making it a matter of setting up a 
configuration matrix.

Run ROOT's 
benchmarks nightly on 

Intel hardware
Q1



IPCC-ROOT Statement of Work 2018

4

Component in 
ROOT Deliverable Success Criteria Period

Math

Modernize ROOT's Math packages by integrating clad: Y1, 
Q4 delivers clad: a tool to speed up the production of 

derivatives. RooFit and TMVA are one of the major places 
where clad can be used. Currently, the only foreseen 

derivation backend is employing the numerical 
differentiation. Clad can be implemented as another backend 

which delivers derivatives.

Enable a clad-based 
derivative backend Q2



IPCC-ROOT Statement of Work 2018

5

Component in 
ROOT Deliverable Success Criteria Period

I/O and 
Reflection

Optimize ROOT's I/O and dictionary format employing C+
+ Modules: ROOT's I/O and reflection layers performs an 

essential role in the overall performance of ROOT. Currently, 
ROOT uses its C++ interpreter, cling, to learn about memory 

layout and other important properties of C++ entities in 
order to perform correct and efficient on-disk serialization or 
deserialization. Cling, parses source code to understand the 

object layouts. In many cases the parsing slows down the 
overall system performance. We can reduce the amounts of 

parsing by introducing C++ modules. This in turn will 
reduce the locking times in the reflection layer, making 

ROOT more robust when used in multithreaded 
environments. 

Enable C++ Modules 
as a reflection 

dictionary provider
Q3



IPCC-ROOT Statement of Work 2018

6

Component in 
ROOT Deliverable Success Criteria Period

I/O and 
Reflection

Optimize ROOT's reflection layer: In a few places ROOT 
asks for reflection information eagerly which causes the 

interpreter to activate locks and reduce the parallel execution. 
Instead, ROOT's reflection layer should request only the 

minimal amount of type information lazily. This in turn will 
reduce the locking times in the reflection layer, making 

ROOT more robust when used in multithreaded 
environments.

Reduce ROOT's 
locking times Q4



Thank you!


