
IPCC ROOT
Princeton/Intel Parallel Computing Center

08.11.2018

Showcase Presentation
PI Peter Elmer Vassil Vassilev, Oksana Shadura, Yuka Takahashi

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Outline

✤ IPCC-ROOT. Plan of work. Goals

✤ Code modernization:

✤ Enable Continuous Performance Integration

✤ Modernize ROOT's Math packages by integrating clad

✤ Optimize ROOT's I/O and dictionary format employing C++ Modules

✤ Optimize ROOT's reflection layer

✤ Future directions

✤ Other activities & Outreach
!2

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

IPCC-ROOT

✤ ROOT is in the core of HEP experiments (including LHC’s ALICE, ATLAS, CMS,
LHCb) and around 1EB of data is stored in ROOT files. Even a small
improvement in ROOT could have significant impact on the HEP community

✤ Princeton/Intel Parallel Computing Center to modernize ROOT funded via
Intel’s Parallel Computing Center (IPCC) program

✤ Started in 2017 in coordination with CERN OpenLab and the ROOT Team

✤ 1 full time (Vassil) engineer employed for 1 (+1) year, located at CERN, member
of the ROOT team, plus some NSF-funded DIANA/HEP collaboration
(O.Shadura, Y.Takahashi)

!3

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Work plan 2018

!4

Component in
ROOT Deliverable Success Criteria Period

Infrastructure

Enable Continuous Performance Integration: In Y1 we
implemented various microbenchmarks which test code

scalability (esp with respect to threading and vectorisation). We
would like to continue extending them and running them on a
nightly basis. Automatizing the process would allow us to find
performance regressions. Another direct benefit would be that
we can provide more detailed comparisons between compilers,

compiler versions, compiler switches, libraries, operating
systems and various Intel hardware. Currently the process is

very laborious and takes a lot of developer's time which can be
replaced by this automatic infrastructure making it a matter of

setting up a configuration matrix.

Run ROOT's
benchmarks nightly on

Intel hardware
Q1

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Work plan 2018

!5

Component in
ROOT Deliverable Success Criteria Period

Math

Modernize ROOT's Math packages by integrating clad: Y1,
Q4 delivers clad: a tool to speed up the production of

derivatives. RooFit and TMVA are one of the major places
where clad can be used. Currently, the only foreseen

derivation backend is employing the numerical
differentiation. Clad can be implemented as another backend

which delivers derivatives.

Enable a clad-based
derivative backend Q2

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Work plan 2018

!6

Component in
ROOT Deliverable Success Criteria Period

I/O and
Reflection

Optimize ROOT's I/O and dictionary format employing C++
Modules: ROOT's I/O and reflection layers performs an

essential role in the overall performance of ROOT. Currently,
ROOT uses its C++ interpreter, cling, to learn about memory

layout and other important properties of C++ entities in order
to perform correct and efficient on-disk serialization or

deserialization. Cling, parses source code to understand the
object layouts. In many cases the parsing slows down the

overall system performance. We can reduce the amounts of
parsing by introducing C++ modules. This in turn will reduce
the locking times in the reflection layer, making ROOT more

robust when used in multithreaded environments.

Enable C++ Modules
as a reflection

dictionary provider
Q3

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Work plan 2018

!7

Component in
ROOT Deliverable Success Criteria Period

I/O and
Reflection

Optimize ROOT's reflection layer: In a few places ROOT
asks for reflection information eagerly which causes the

interpreter to activate locks and reduce the parallel execution.
Instead, ROOT's reflection layer should request only the

minimal amount of type information lazily. This in turn will
reduce the locking times in the reflection layer, making

ROOT more robust when used in multithreaded
environments.

Reduce ROOT's
locking times Q4

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Working Environment

Performance measurements are done on:

✤ [Vassil] Mac OS X, 2.5 GHz Intel Core i7, 16 GB

✤ [Yuka] Archlinux 4.18.16 GNU/Linux,Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 16 GB DDR4 ,
1xSSD 512 GB

✤ [NUC] Ubuntu 18.04 , kernel 4.15.0-38-generic, i7-8809G Processor with Radeon™ RX Vega M GH
graphics (8M Cache, up to 4.20 GHz), 2x16 GB DDR4 2666 , 1xSSD 512 GB (latest Intel NUC Hades
Canyon)

✤ [Oksana] Ubuntu 18.04.1 LTS, Lenovo Thinkpad E470 i7-7500U NVIDIA GeForce 940MX, 16GB RAM,
256GB SSD

✤ [OpenLab] CentOS 7.3 kernel 3.10.0-514.26.2.el7.x86_64, Intel Xeon CPU E5-2683 v3 @ 2.00GHz, 14 core
(dual socket system => 14x2x2 = up to 56 logical), 64 GB DDR4, 2xSSDs 240GB (latest Haswell)

!8

http://ipcc-root.github.io/
http://vassil.vassilev.info/

Code Modernization in ROOT. Enable Continuous
Performance Integration  

Run ROOT's benchmarks nightly on Intel hardware

Completed Q1 Deliverable (available at https://rootbnch-grafana-test.cern.ch)

https://rootbnch-grafana-test.cern.ch

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Continuous Performance Integration. Goals

✤ Observe performance improvements and guarantee their sustainability

✤ Monitor continuously the framework’s performance

✤ Visualize performance regressions

✤ Support flexible and extensible benchmarks and metrics (such as cpu time,
memory usage and on-disk size)

✤ Measurements done on [OpenLab]

!10

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Continuous Performance Integration. Results

!12

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Continuous Performance Integration. Results

!13

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Continuous Performance Integration. Results

✤ The technology is the ROOT performance monitoring system (publicly
accessible through ROOT's homepage, see "Development/Benchmarks" at
https://root.cern)

✤ Verification of benchmarks now a required step for releases, see step 3 of
https://root.cern/release-checklist

✤ Other projects (in particular Geant) start working on similar system using
the same set of technologies

!14

http://ipcc-root.github.io/
http://vassil.vassilev.info/
https://root.cern
https://root.cern.ch/release-checklist

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Continuous Performance Integration. Publications & Outreach

✤ Continuous Performance Benchmarking Framework for ROOT, Poster at
CHEP, 9-13 July 2018, Sofia, Bulgaria

✤ Many well-received CERN-internal presentations

!15

http://ipcc-root.github.io/
http://vassil.vassilev.info/
https://indico.cern.ch/event/587955/contributions/2938012/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Continuous Performance Integration. Future Work

✤ Increase the micro benchmark coverage

✤ Track regressions and send alarms

✤ Automatically generate flame graphs

✤ Integrate it into the pull request development model of ROOT

!16

http://ipcc-root.github.io/
http://vassil.vassilev.info/

Code Modernization in ROOT. Modernize ROOT's Math
packages by integrating clad 

Enable a clad-based derivative backend

Completed Q2 Deliverable (available in ROOT v6.14 and ROOT v6.16)

https://github.com/root-project/root/tree/v6-14-00
https://github.com/root-project/root/tree/v6-16-00

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Automatic Differentiation in a Nutshell. Clad

Automatic differentiation is superior to the slow symbolic or often inaccurate numerical
differentiation. It uses the fact that every computer program can be divided into a set of
elementary operations (-,+,*,/) and functions (sin, cos, log, etc). By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be computed. See more at the
IPCC-ROOT Showcase Presentation in 2017.  
 
Clad is a C/C++ to C/C++ language transformer implementing the chain rule from differential
calculus. For example:

!18

constexpr double MyPow(double x) { return x*x; }

constexpr double MyPow_darg0(double x) { return (1. * x + x * 1.); }

http://ipcc-root.github.io/
http://vassil.vassilev.info/
https://ipcc-root.github.io/downloads/20170801-ipcc-princeton-showcase-presentation.pdf

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Clad. Goals

✤ Improve numerical stability and correctness

✤ Replace iterative algorithms computing gradients with a single function call
(of a interpreter-generated routine)

✤ Provide an alternative way of gradient computations in ROOT’s fitting
algorithms

✤ Measurements done on [NUC]

!19

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Clad. Correctness

!20

inline double breitwigner_pdf(double x, double gamma, double x0 = 0) {
 double gammahalf = gamma/2.0;
 return gammahalf/(M_PI * ((x-x0)*(x-x0) + gammahalf*gammahalf));
}

auto h = new TF1("f1", "breitwigner");
double p[] = {3, 1, 2};
h->SetParameters(p);
double x[] = {0};
TFormula::GradientStorage clad_res(3);
TFormula* formula = h->GetFormula();
formula->GradientPar(x, clad_res);
printf(“Res=%g\n”, clad_res[2]);

auto h = new TF1("f1", "breitwigner");
double p[] = {3, 1, 2};
h->SetParameters(p);
double x[] = {0};
TFormula::GradientStorage numerical_res(3);
h->GradientPar(x, numerical_res.data());
printf(“Res=%g\n”, numerical_res[2]);

Res=-2.12793e-14Res=0

Cancellation at 
for value of 2.

∂F
∂γ

Clad Numerical

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Clad. Results

!21

The computation of gradient (on the left) shows significant benefits. We are investigating if we can project
it in the ROOT fitting package (on the right) even better.

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Clad. Results

!22

Clad removes the
iterations done by the

numerical differentiation in
DoEval()

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Clad. Publications & Outreach

✤ Automatic Differentiation in C/C++ Using Clang Plugin Infrastructure,
Lightening Talk at LLVM Dev Meeting, 17-18 Oct 2018, San Jose, CA, USA

✤ Successful Google Summer of Code project on "Extend clad - The
Automatic Differentiation"

!23

http://ipcc-root.github.io/
http://vassil.vassilev.info/
http://llvm.org/devmtg/2018-10/talk-abstracts.html#lt1
https://summerofcode.withgoogle.com/archive/2018/projects/6218216741273600/
https://summerofcode.withgoogle.com/archive/2018/projects/6218216741273600/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Clad. Future Work

✤ Continue advancing the automatic differentiation implementation

✤ Extend the usage of the TFormula differentiation backend

✤ Teach rootcling how to use clad and store the derivatives in the dictionaries

!24

http://ipcc-root.github.io/
http://vassil.vassilev.info/

Code Modernization in ROOT. Optimize ROOT's I/O and
dictionary format employing C++ Modules 
Enable C++ Modules as a reflection dictionary provider

Completed Q3 Deliverable (available in ROOT v6.16 as a technology preview)

https://github.com/root-project/root/tree/v6-16-00

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Goals

✤ Improve correctness of ROOT

✤ Avoid parsing header files at ROOT’s runtime

✤ Optimize performance of ROOT for third-party code (most notably ALICE,
ATLAS, CMS and LHCb)

✤ Measurements done on [Vassil], [Yuka], [Oksana], [OpenLab]

!26

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Correctness

!27

Regular ROOT cannot
load all C++ entities
due to limitations of
the implementation

Using C++ Modules
fixes the correctness

issues.

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Technology Preview

!28

C++ Modules performance comparisons are made against ROOT’s non-extendable optimization data
structure (PCH). The major improvements will be in experiments’ software stacks.

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

For small amount of work, we
notice an overhead. It turns out

to be a constant overhead
introduced of the CxxModules

preloading.

C++ Modules. Results

!29

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Results

!30

CxxModules preloading
mechanism, introduces

constant overhead. We know
how to fix it!

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Publications & Outreach

✤ Optimizing Frameworks' Performance Using C++ Modules-Aware ROOT ,
Poster at CHEP, 9-13 July 2018, Sofia, Bulgaria

✤ Collaboration with CMSSW for an early adoption of the feature (see GitHub
meta issue)

✤ Various presentations in CERN-SFT group, ROOT team, DIANA-HEP and
ROOT Workshop

!31

http://ipcc-root.github.io/
http://vassil.vassilev.info/
https://indico.cern.ch/event/587955/contributions/2937639/
https://github.com/cms-sw/cmssw/issues/15248
https://github.com/cms-sw/cmssw/issues/15248
https://ep-dep-sft.web.cern.ch/
https://root.cern.ch
http://diana-hep.org/
https://indico.cern.ch/event/697389/contributions/3062026/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Future Work

✤ Turn on the feature by default for ROOT

✤ Optimize the feature towards various workflows

✤ Help with the migration process of the third-party code, and in particular
the major LHC experiments (ALICE, ATLAS, CMS, LHCb)

!32

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

C++ Modules. Future Work

!33

Synthetic benchmarks (on information not available in the PCH of ROOT) show promising results. We
need to reconfirm once we deploy the technology in the experiments’ software.

http://ipcc-root.github.io/
http://vassil.vassilev.info/

Code Modernization in ROOT. Optimize ROOT's reflection
layer 

Reduce ROOT's locking times

Completed Q4 Deliverable (available in ROOT v6.14 and ROOT v6.16)

https://github.com/root-project/root/tree/v6-14-00
https://github.com/root-project/root/tree/v6-16-00

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Optimize ROOT's reflection layer. Goals

✤ Replace performance-inefficient legacy interfaces

✤ Optimize in-process memory footprint

✤ Measurements done on [Vassil]

!35

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Optimize ROOT's reflection layer. Results

!36

Depending on the workflow we get up to ~33% memory reduction without execution regressions

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Optimize ROOT's reflection layer. Future Work

✤ Pinpoint and optimize the next set of bottlenecks in ROOT’s reflection layer

!37

http://ipcc-root.github.io/
http://vassil.vassilev.info/

Extra work items

Completed (available in ROOT master)

https://github.com/root-project/root/tree/master

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Extra Things Delivered by IPCC-ROOT

✤ Move ROOT closer to LLVM upstream — reduced the technical debt in ROOT by moving it to the
LLVM mainline

✤ Contributions to C++20 standard — participated in ISOCpp Standardization Meetings. Most notably
‘constexpr virtual’ as per P1064R0 accepted in the C++20 working draft.

✤ Upgrade to LLVM 5.0 — switch the internal fork to newer and more stable version of LLVM

✤ Number of contributions to the Clang Frontend — implemented a few optimizations and bug fixes
with respect to C++ Modules

✤ Implement plugin support in cling — implemented a plugin-extension engine in cling where user
plugins can specialize further the interpretative behavior of cling (such example is clad).

✤ Co-chaired the CHEP Conference in Sofia, Bulgaria
!39

http://ipcc-root.github.io/
http://vassil.vassilev.info/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1064r0.html

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Future Directions

✤ Sustainability of the products of this work will be provided by the ROOT
team, and some elements will be picked up by the recently NSF-funded
IRIS-HEP Software Institute (http://iris-hep.org)

✤ We are looking forward to continue collaborating with Intel!

!40

http://ipcc-root.github.io/
http://vassil.vassilev.info/
http://iris-hep.org

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Conclusions

✤ During the 2 year project we explored the full software-hardware stack of
the modern machines. We demonstrated performance improvements in
threading, vectorization, compiler switches, compiler technologies and
high-level algorithms

✤ We would like to express our deepest gratitude to Intel and the IPCC
program for giving us such an opportunity!

!41

http://ipcc-root.github.io/
http://vassil.vassilev.info/

Other Activities & Outreach

Continuous efforts

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Training — CoDaS-HEP school

A school on tools, techniques and methods for Computational and Data Science
for High Energy Physics.

✤ Second edition took place in Princeton University 23-27 July 2018

✤ 60 participants

✤ Topics included: performance tuning and optimization, vectorization,
parallel programming (T. Mattson/Intel), and machine learning and big
data tools.

✤ NSF has provided funding to continue this school for another 5 years
!43

http://ipcc-root.github.io/
http://vassil.vassilev.info/
http://codas-hep.org/
http://codas-hep.org/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Collaborating project — DIANA/HEP

An NSF-funded project focused on developing tools for the HEP analysis tools
ecosystem (of which ROOT is a core element). DIANA/HEP has three broad goals:
improving performance, increasing interoperability of HEP tools with the broader
scientific software ecosystem and providing tools for collaborative analysis.

For the IPCC, the focus on performance is the relevant part. The IPCC will
collaborate with DIANA (and the ROOT team) on I/O and probably (eventually)
RooFit modernization.

Team: Princeton, U.Nebraska-Lincoln, U.Cincinnati, NYU

Website: http://diana-hep.org
!44

http://ipcc-root.github.io/
http://vassil.vassilev.info/
http://diana-hep.org

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Related projects — Parallel Kalman Filter Tracking

Charged particle tracking reconstruction is the key pattern recognition
algorithm requiring modernization for parallel architectures and the
challenges of the HL-LHC. This is an NSF-funded project which is aiming
to modernize these algorithms for use by CMS and others at the HL-LHC.

For the IPCC project, it provides a key testbed and use cases for testing
vectorization (e.g. Matriplex, VecGeom)

Team: Princeton, UCSD, Cornell

Website: http://trackreco.github.io
!45

http://ipcc-root.github.io/
http://vassil.vassilev.info/

I’d like to thank Raphael Isemann, Aleksandr Efremov and the ROOT team for
the help;

Thanks to Claudio Bellini and Klaus-Dieter Oertel from Intel for providing useful
insights throughout the project;

Special thanks to Luca Atzori and CERN OpenLab for providing the cutting edge
Intel infrastructure and technical support.

Thank you!

Backup Slides

Might look messier than expected.

Further Reading About Clad

References:

[1] clad — Automatic Differentiation with Clang, http://llvm.org/devmtg/
2013-11/slides/Vassilev-Poster.pdf  
[2] clad Official GitHub Repository https://github.com/vgvassilev/clad 
[3] clad demos https://github.com/vgvassilev/clad/tree/master/demos 
[4] clad showcases https://github.com/vgvassilev/clad/tree/master/test  
[5] More automatic differentiation tools http://www.autodiff.org/ 
[6] Automatic differentiation in Machine learning: a survey https://arxiv.org/
pdf/1502.05767.pdf

http://llvm.org/devmtg/2013-11/slides/Vassilev-Poster.pdf
http://llvm.org/devmtg/2013-11/slides/Vassilev-Poster.pdf
https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad/tree/master/demos
https://github.com/vgvassilev/clad/tree/master/test
http://www.autodiff.org/
https://arxiv.org/pdf/1502.05767.pdf
https://arxiv.org/pdf/1502.05767.pdf

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Data Workflow

!49

simulation

analysis

reconstruction

initial	event
reconstruction

event
reprocessing

event	
simulation

batch
physics
analysis

Data	Acquisition	System	
event	pre-selection

event
summary
data

analysis objects
(extracted by physics topic)

interactive
physics analysis

raw
data

processed
data

http://ipcc-root.github.io/
http://vassil.vassilev.info/

IPCC-ROOT, Vassil Vassilev, 08-Nov–2018

Worldwide LHC Computing Grid

!50

The Tire-1 Centers
Canada – Triumf (Vancouver)
France – IN2P3 (Lion)
Germany – Farschunszentrum
Karlsruhe
Italy – CNAF (Bologna)
Netherlands – NIKHEF/SARA
(Amsterdam)

Nordic countries – distributed
Tier-1
Spain – PIC (Barcelona)
Taipei – Academia Sinica
UK – Rutherford Lab (Oxford)
US – FermiLab (Illinois)
US – Brookhaven (NY)

CERN

IN2P3	
Lyon

FNAL	
Chicago

ASGC	
Taipei

Tier	2 Tier	2Tier	2 Tier	2

LHC Computing
Service Hierarchy

Tier 0
Initial processing
Long-term data archive

Tier 1s
data curation
data-intensive analysis
national, regional support

Tier 2s
end-user analysis
Simulation
~130 centers
in 33 countries

. . .

. . .

Tape robot

http://ipcc-root.github.io/
http://vassil.vassilev.info/

